PUBLICATIONS

Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy

Spiller KJ, Restrepo CR, Khan T, Dominique MA, Fang TC, Canter RG, Roberts CJ, Miller KR, Ransohoff RM, Trojanowski JQ, Lee VM. Nat Neurosci. 2018 Feb 20. doi: 10.1038/s41593-018-0083-7. [Epub ahead of print]

Summary

The selective demise of motor neurons is the hallmark of Lou Gehrig’s disease, also known as amyotrophic lateral sclerosis (ALS). Yet neurologists have suspected there are other types of brain cells involved in the progression of this disorder -- perhaps protection from it, which could light the way to treatment methods for the incurable disease. Researchers in the Lee Lab have now engineered mice in which the damage caused by a mutant human TDP-43 protein could be reversed by one type of brain immune cell. TDP-43 is a protein that misfolds and accumulates in the motor areas of the brains of ALS patients.
First author Krista J. Spiller, PhD, a postdoctoral fellow, and senior author Virginia M-Y. Lee, PhD, director of the Center for Neurodegenerative Disease Research and a professor of Pathology and Laboratory Medicine, published their findings this week in Nature Neuroscience. They found that microglia, the first and primary immune response cells in the brain and spinal cord, are essential for dealing with TDP-43-associated neuron death. This study is the first to demonstrate how healthy microglia respond to pathological TDP-43 in a living animal.
Read the Department of Communications news release